

Product Introduction

MS2830A Signal Analyzer

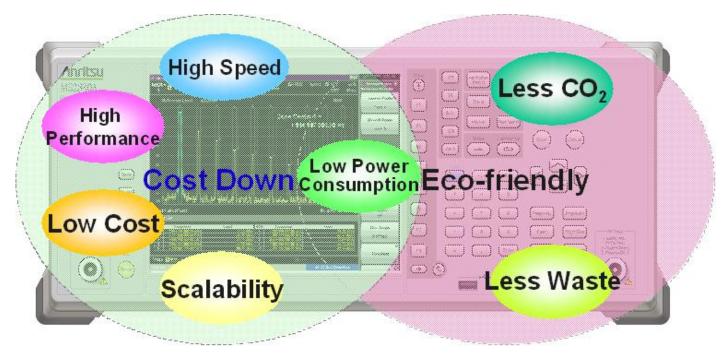
Signal Analyzer MS2830A series

3.6 GHz Signal Analyzer MS2830A-040 6 GHz Signal Analyzer MS2830A-041 13.5 GHz Signal Analyzer MS2830A-043

Product Introduction

MS2830A-040: 9 kHz to 3.6 GHz MS2830A-041: 9 kHz to 6 GHz MS2830A-043: 9 kHz to 13.5 GHz <MS2830A-044: 9 kHz to 26.5 GHz*> <MS2830A-045: 9 kHz to 43 GHz*>

*: See MS2830A-044/045 Product Introduction.


Version 15.00

ANRITSU CORPORATION

Signal Analyzer MS2830A

The MS2830A is a high-speed, high-performance, cost-effective Spectrum Analyzer/Signal Analyzer. Not only can it capture wideband signals but FFT technology supports multifunction <u>vector signal</u> <u>analyses (VSA)</u> in both the time and frequency domains. Behavior in the time domain that cannot be handled by a sweep type spectrum analyzer can be checked in the frequency domain. A wide frequency can be analyzed using sweep type spectrum analysis functions while detailed signal analysis of a specific frequency band is supported too.

Moreover, the built-in <u>vector signal generator (VSG)</u> function outputs both continuous wave (CW) and modulated signals for use as a reference signal source when testing Tx characteristics of parts and as a signal source for evaluating Rx characteristics.

Key Signal Analyzer MS2830A Features

MS2830A-040: 9 kHz to 3.6 GHz MS2830A-041: 9 kHz to 6.0 GHz MS2830A-043: 9 kHz to 13.5 GHz

10 Times Faster

- Local measurement and display update : 2.1 ms (SWT:1ms) : 0.7 ms (SWT:100us)
- Remote measurement and LAN transfer : 4.0 ms
- Marker peak search: 1.5 ms
- Center frequency tune + sweep + sweep data transfer: 12ms (RF/Micro band)

High RF Performance

- ♦ Displayed Avg. Noise Level: -153 dBm/Hz (30 MHz to 1 GHz) ♦ TOI : +15 dBm (300 MHz to 3.5 GHz)
- ♦ Total Level Accuracy: ±0.3 dB typ. (300 kHz to 4.0 GHz)

Low Cost Plus High Performance

High-end RF performance at low-end price All-in-one spectrum analyzer and signal generator cuts costs by 30%

Low Power Consumption

110 VA (nominal) for 3.6/6 GHz SPA configuration

Excellent Expandability Options

Flexible configuration from basic spectrum analyzer to TRx all-in-one solution using options -Analysis Bandwidth Option-

MS2830A-005: Analysis Bandwidth Extension to 31.25 MHz MS2830A-006: Analysis Bandwidth 10 MHz MS2830A-077: Analysis Bandwidth Extension to 62.5 MHz* MS2830A-078: Analysis Bandwidth Extension to 125 MHz*

- *Note) Opt-077/078: An image response is received when setting the bandwidth to more than 31.25 MHz. This can be used when not inputting a signal frequency outside the MS2830A analysis bandwidth (125 MHz max.). The Signal Analyzer MS2690A/91A/92A series is recommended for other measurement purposes.
- -Low Phase Noise Performance Option-MS2830A-066: Low Phase Noise Performance
- -Signal Generator Option-

MS2830A-020: 3.6 GHz Vector Signal Generator MS2830A-021: 6 GHz Vector Signal Generator MS2830A-088: 3.6GHz Analog Signal Generator **MS2830A-052: Internal Signal Generator Control Function**

- -Noise Figure Measurement Option-**MS2830A-017: Noise Figure Measurement Function**
- -Audio Analyzer Option-MS2830A-018: Audio Analyzer
- -BER Measurement Function Option-MS2830A-026: BER Measurement Function

High Speed Supporting 10 Times Faster Throughput

The Signal Analyzer MS2830A supports very high-speed spectrum analyzer functions, such as sweeping and frequency switching time. Using the VSA mode with advanced DSP and FFT technologies cuts in-band and out-of-band spurious measurement times by 90% (cf previous Anritsu instruments) to greatly improve manufacturing and adjustment throughput.

Cuts tact time and improves adjustment efficiency

Best-of-class measurement speed (SPA Mode)

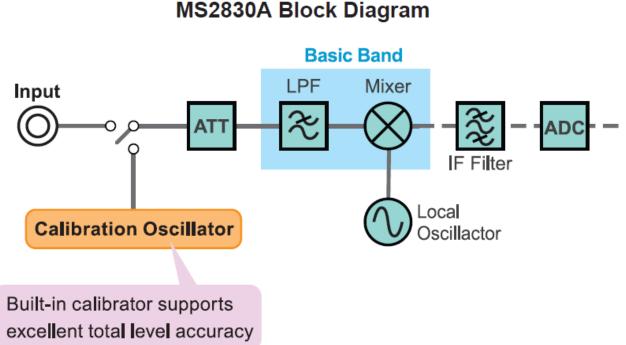
Local measurement and display update : 2.1 ms (SWT: 1 ms)
 : 0.7 ms (SWT: 100 us)

- Remote measurement and LAN transfer : 4.0 ms
- ♦ Marker peak search: 1.5 ms
- Center frequency tune + sweep + sweep data transfer: 12ms (RF/Micro band)

The above times are for real measurements based on Anritsu measurement conditions. They are not guaranteed specifications.

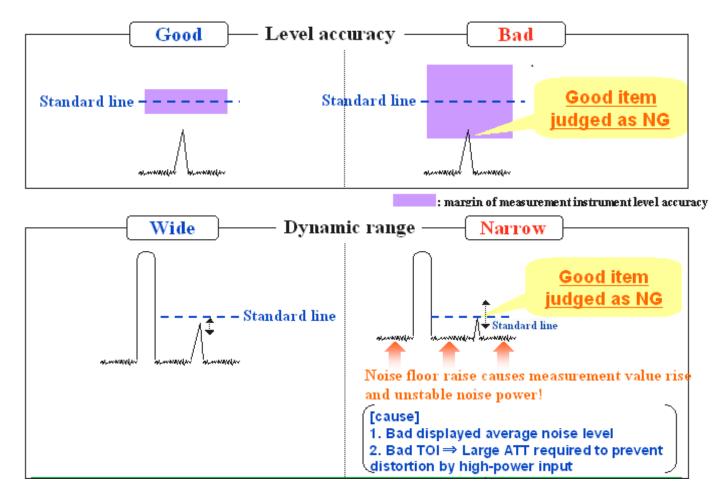
Actual measurement times vary with the PC and measurement conditions.

Faster speed (VSA Mode) High-speed, in-band measurements up to 125 MHz bandwidth

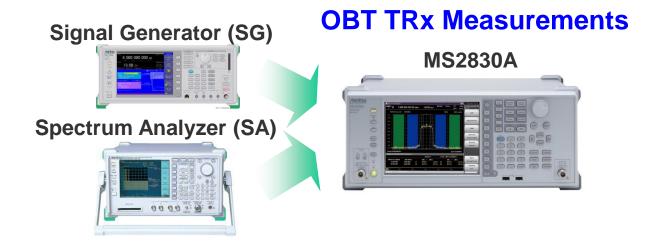

High Speed

The MS2830A performs in-band measurements, such as ACP, OBT and Channel Power, many times faster than sweep spectrum analyzers by using FFT batch capture and analysis over a 125 MHz bandwidth and measurement interval.

Level calibration performance


The MS2830A use built-in calibrator offers excellent total level accuracy of \pm 0.3 dB (typ.) at 300 kHz to 4 GHz.

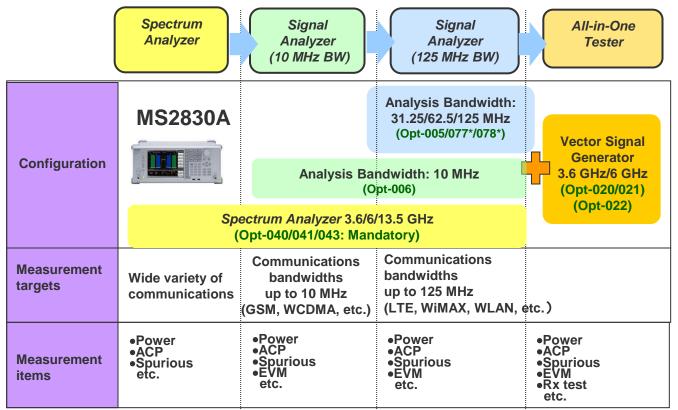
High RF Performance Improves Yield


Excellent ±0.3 dB (typ.) absolute level accuracy and high 168 dB dynamic range improve yield by eliminating false-negative evaluation errors at distortion and spurious measurements.

Low-Cost Plus High-Performance

The all-in-one SA + SG configuration costs 30% less than combining a standalone SA and SG.

Low Cost


30% Lower Cost

Supports easy configuration of measurement systems and saves bench space, initial investment, and running costs (calibration and power consumption)

Optimum Current and Future Capital Investment

The MS2830A has various options to support continuously evolving wireless systems. It supports expansion from the base configuration with the spectrum analyzer to an all-in-one TRx tester as needed. Functions required now and sometime in the future are supported at minimum cost.

Scalability

*Note) Opt.077/078:

An image response is received when setting the bandwidth to more than 31.25 MHz. This can be used when not inputting a signal frequency outside the MS2830A analysis bandwidth (125 MHz max.). The Signal Analyzer MS2690A/91A/92A series is recommended for other measurement purposes.

Optimum Current and Future Capital Investment

Scalability

MS2830A-066 Low Phase Noise Performance Option

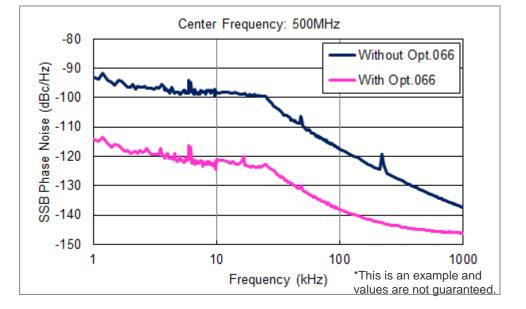
Phase noise performance is increasingly important at carrier offsets of 1 kHz to 100 kHz. Spectrum analyzer phase noise performance affects ACLR/MASK measurements at narrowband communications. (Channel bandwidth : <100 kHz) Add Option 066 when required by the specifications.

Frequency Range:

9 kHz to 3.7 GHz

(Frequency band mode: * Normal)

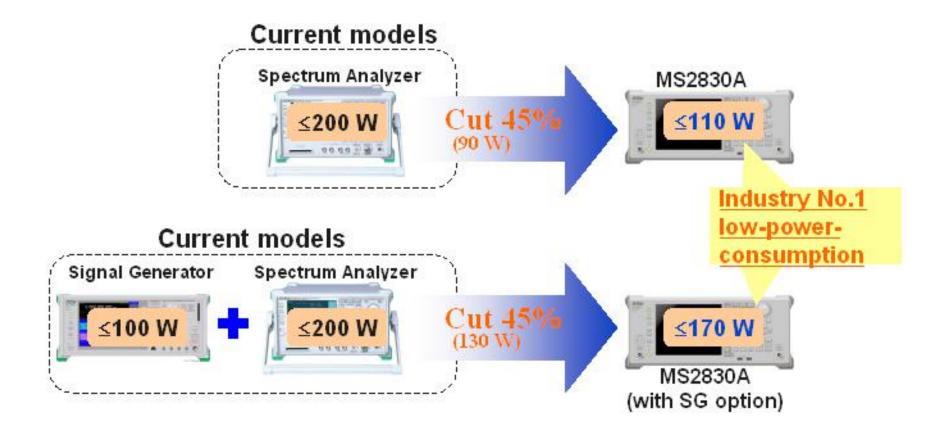
9 kHz to 3.5 GHz


(Frequency band mode:* Spurious) *: Requires MS2830A-041/043 for setting.

Span:

300 Hz to 1 MHz (Spectrum Analyzer) 1 kHz to 31.25 MHz (Signal Analyzer)

MS2830A-066 cannot be retrofitted MS2830A-066 sometimes cannot be installed depending on options.


Model	Case 1	Case2	Case 3
MS2830A-020/021	Yes	Yes	No
MS2830A-043	Yes	No	Yes
MS2830A-066	No	Yes	Yes

Low Power Consumption

The MS2830A consumes just \leq 110 W, cutting power by 45% compared to current models and reducing electricity consumption directly and indirectly through lower air conditioning costs. CO₂ emissions are reduced too.

Various Measurement Functions and Software

Digitize function

(Opt.005/006/077/078)

Saves and input signals as IQ data files for re-analysis with VSA function

VSA function (Opt.005/006/077/078)

Seamless signal capture and analysis in multiple domains

Measurement software

(MX2690xxA)

Covers modulation analysis of various communication systems from cellular systems, such as GSM, WCDMA, and LTE to GP analysis software.

Options

-Analysis Bandwidth Option-

MS2830A-005 Analysis Bandwidth Extension to 31.25 MHz MS2830A-006 Analysis Bandwidth 10 MHz MS2830A-077 Analysis Bandwidth Extension to 62.5 MHz^{*} MS2830A-078 Analysis Bandwidth Extension to 125 MHz^{*}

*Note) Opt-077/078: An image response is received when setting the bandwidth to more than 31.25 MHz. This can be used when not inputting a signal frequency outside the MS2830A analysis bandwidth (125 MHz max.). The Signal Analyzer MS2690A/91A/92A series is recommended for other measurement purposes.

-Signal Generator Option-

MS2830A-020 3.6 GHz Vector Signal Generator MS2830A-021 6 GHz Vector Signal Generator MS2830A-088 3.6GHz Analog Signal Generator

Vector Signal Generator (Opt.020/021 and others)

Covers frequency range from 250 kHz to 3.6 GHz/ 6 GHz with 120-MHz wideband vector modulation bandwidth.

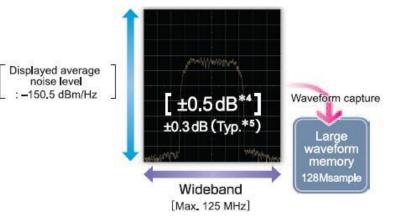
Other useful functions

Measure function

(SPA as standard, VSA function via Opt.005/006/077/078)

- Phase Noise Measurement function (Opt.010)
- Noise Figure Measurement function (Opt.017)
- Audio Analyzer function (Opt.018)
- ♦BER Measurement function (Opt.026)
- Internal Signal Generator Control Function (Opt.052)

Digitize: Wideband and High Accuracy Waveform Capture


Captures wideband waveforms up to 125 MHz with accuracy of ±0.3 dB

Based on the excellent level accuracy and wide dynamic range of the MS2830A, a signal with an FFT analysis bandwidth of up to 125 MHz can be captured with a level accuracy of ± 0.3 dB typ.

Max. Capture Time: 0.5 s to 2000 s Max. Number of Samples: 100 Msamples

Span*	Sampling Rate	Sampling Rate Capture Time Ma: Sampling	
1 kHz	2 kHz	2000 s	4M
2.5 kHz	5 kHz	2000 s	10M
5 kHz	10 kHz	2000 s	20M
10 kHz	20 kHz	2000 s	40M
25 kHz	50 kHz	2000 s	100M
50 kHz	100 kHz	1000 s	100M
100 kHz	200 kHz	500 s	100M
250 kHz	500 kHz	200 s	100M
500 kHz	1 MHz	100 s	100M
1 MHz	2 MHz	50 s	100M
2.5 MHz	5 MHz	20 s	100M
5 MHz	10 MHz	10 s	100M
10 MHz	20 MHz	5 s	100M
25 MHz	50 MHz	2 s	100M
31.25 MHz	50 MHz	2 s	100M
50 MHz	100 MHz	500 ms	50M
62.5 MHz	100 MHz	500 ms	50M
100 MHz	200 MHz	500 ms	100M
125 MHz	200 MHz	500 ms	100M

*: With Opt. 006: 1 kHz to 10 MHz With Opt. 005/006: 1 kHz to 31.25 MHz With Opt. 005/006/077: 1 kHz to 62.5 MHz With Opt. 005/006/077/078: 1 kHz to 125 MHz

Opt. 006: 10 MHz max.

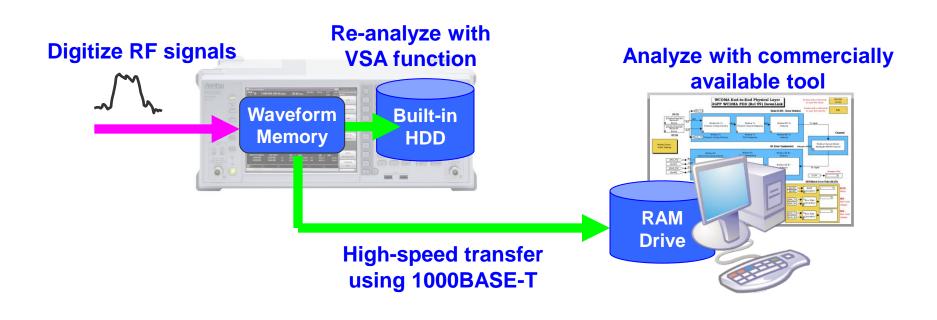
(20 MHz max. sampling rate = 50 ns resolution, ADC resolution 16 bits) Opt. 005^{*1} : 31.25 MHz max.

(50 MHz max. sampling rate = 20 ns resolution, ADC resolution 16 bits) Opt. 077^{*2} : 62.5 MHz max.

(100 MHz max. sampling rate = 10 ns resolution, ADC resolution 14 bits) Opt. 078^{*3} : 125 MHz max.

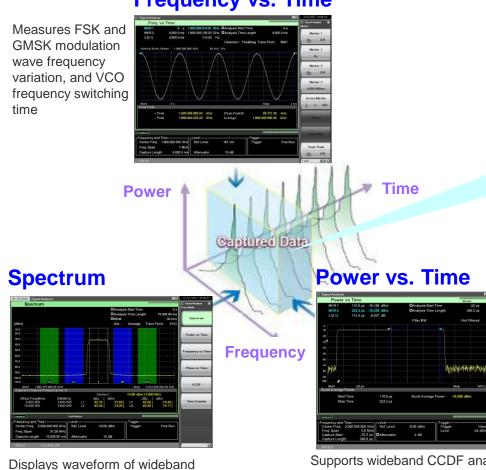
(200 MHz max. sampling rate = 5 ns resolution, ADC resolution 14 bits)

Note) Opt-077/078: An image response is received when setting the bandwidth to more than 31.25 MHz. This can be used when not inputting a signal frequency outside the MS2830A analysis bandwidth (125 MHz max.). The Signal Analyzer MS2690A/91A/92A series is recommended for other measurement purposes.


- *1: Requires Opt. 006.
- *2: Requires Opt. 005 and Opt. 006.
- *3: Requires Opt. 005, Opt. 006 and Opt. 077.
- *4: 300 kHz \leq f < 4 GHz, Frequency band mode Normal.
- *5: Excluding Guard Band.

Digitize: Calibration-Free Waveform Capture

No need for calibration block at analysis tool side


The MS2830A has built-in amplitude/phase calibration circuits to automatically calibrate internal errors.

Captured waveform data are saved to the built-in hard disk and can be output to an external PC via 1000BASE-T.

VSA: Multi-domain Analysis of Captured Signals

Display captured waveforms in various domains

SPAN up to 125 MHz without

interruption

Frequency vs. Time

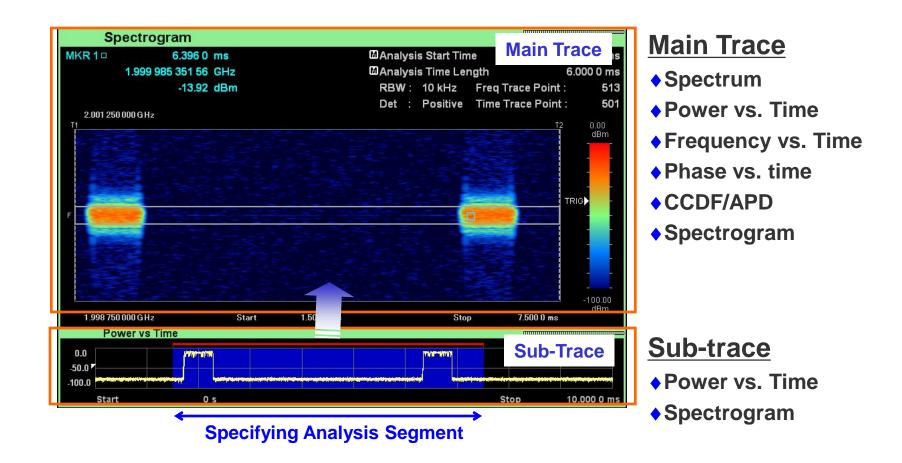
Supports wideband CCDF analysis up to 31.25 MHz; useful for evaluating power amplifiers in wideband communications systems

Phase vs. Time

Monitors time fluctuations of phase to check sudden phase shift

Spectrogram

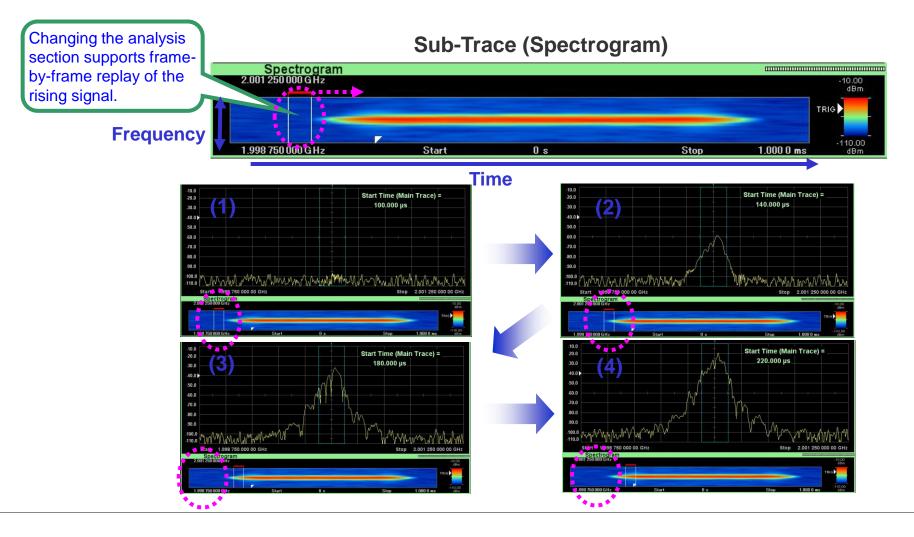
CCDF/APD



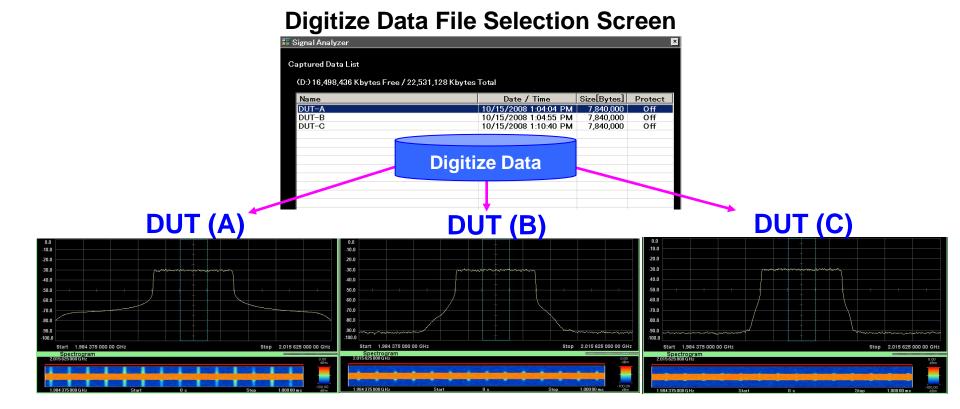
Displays spectrum variations with time; useful for understanding waveform transients because supports visual monitoring of frequency and level time variations

Supports wideband CCDF analysis up to 125 MHz and ideal for evaluating power amps for wideband communication systems

VSA: Intuitive Split-Screen Display

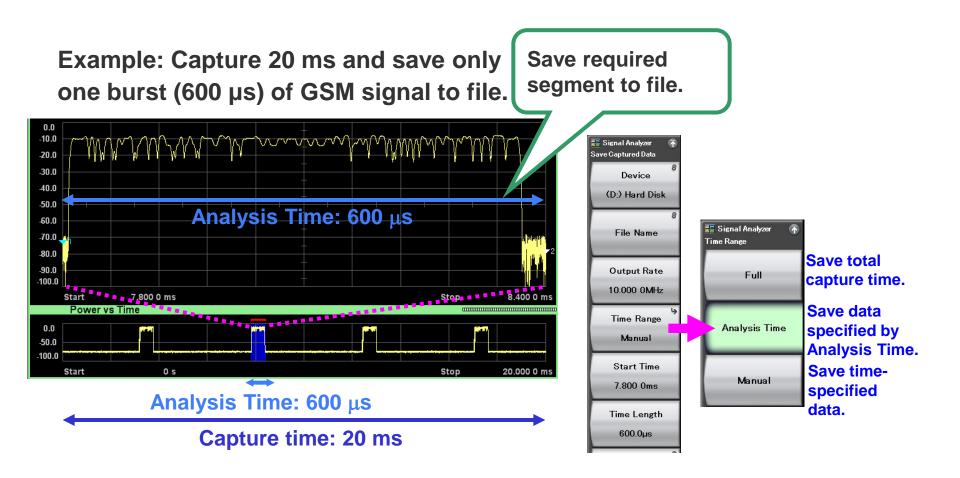

Various VSA analyses can be performed on the main trace by specifying analysis segments on the sub-trace. Intuitive analysis focusing on signal-on/rising/falling, etc., parts is made easy by observing signal distributions on the sub-trace.

VSA: One-Step Observation of Rising/Falling Signals


Changing the analysis segment at the sub-trace permits frame-by-frame replay of the spectrum at the main trace.

This function supports troubleshooting by frame-by-frame replay of transient burst responses and generation of unwanted spurious in captured RF signals.

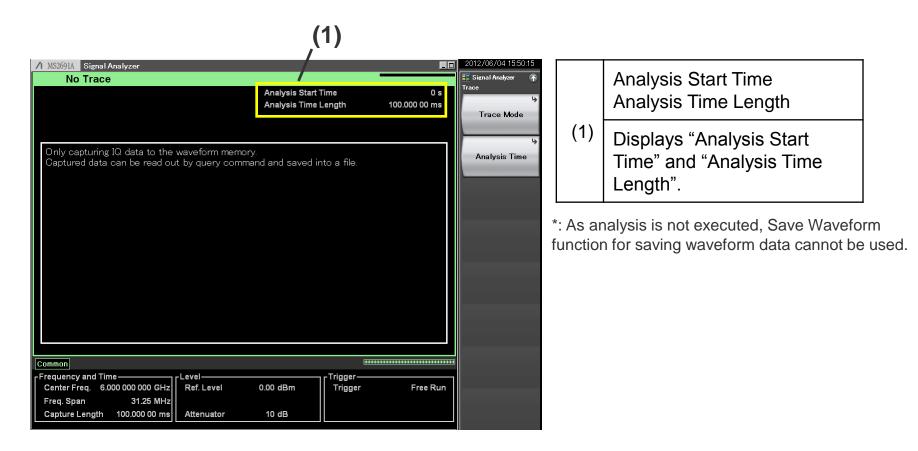
VSA: Useful Replay Function for Comparative Verification


Captured waveforms can be replayed again by using the VSA function to read saved digitize data. This is convenient for comparing performance of each DUT test phase using digitized data as well as for troubleshooting post- shipment product faults

Slide17


VSA: Flexible File Save Function

Captured data can be saved to a file by specifying the Analysis Time range (display range of main trace) or any time. The amount of saved data and later workload are cut because only required segments are captured and saved to a file.


VSA: FFT Analysis for Ultra-High-Speed Advantage

Supports measurements <u>many times faster</u> than a sweep spectrum analyzer by using the signal analyzer mode, which performs FFT analysis.

VSA Function: No Trace Mode

No Trace mode does not execute signal analysis. Therefore, "IQ data output" and "IQ data readout using remote commands" can be executed quickly without the need to wait for completion of analysis.

Measurement Software: Various Communications Systems (1/2)

Measurement Software Modulation analysis of various communication systems from cellular system, such as GSM, WCDMA, and LTE to GP analysis software is all supported. See each measurement software catalog for more details.

Communications Systems	Model	Name Addition to Main frame (<: Can be installed, No: Cannot be installed)		nstalled, be installed)	Analysis Bandwidth Extension Option (√: Required, √+: Function expansion, Space (no symbol): No specification) Opt. 006 [0pt. 005/009] Opt. 077 [0pt. 078]			
			Opt. 040/041/043	•			Opt. 077	Opt. 078
	MX269020A	LTE Downlink Measurement Software	✓	✓	✓	✓		
LTE/LTE-Advanced	MX269020A-001	LTE-Advanced FDD Downlink Measurement Software	~	✓	✓	✓	√ +*1	✓+*1
(FDD)	MX269021A	LTE Uplink Measurement Software	✓	✓	✓	✓		
	MX269021A-001	LTE-Advanced FDD Uplink Measurement Software	~	✓	✓	✓	√+	√+
	MX269022A	LTE TDD Downlink Measurement Software	✓	✓	✓	✓		
LTE/LTE-Advanced	MX269022A-001	LTE-Advanced TDD Downlink Measurement Software	\checkmark	✓	✓	✓	✓ +*1	✓+ ^{*1}
(TDD)	MX269023A	LTE TDD Uplink Measurement Software	~	✓	✓	✓		
	MX269023A-001	LTE-Advanced TDD Uplink Measurement Software	~	✓	✓	✓	√+	√+
W-CDMA/HSPA/	MX269011A	W-CDMA/HSPA Downlink Measurement Software	~	✓	✓			
HSPA Evolution	MX269012A	W-CDMA/HSPA Uplink Measurement Software	~	✓	~			
W-CDMA/HSPA (Downlink)	MX269030A	W-CDMA BS Measurement Software	\checkmark	\checkmark	~			
TD-SCDMA	MX269015A	TD-SCDMA Measurement Software	✓	✓	~			
0.0044.2000	MX269024A	CDMA2000 Forward Link Measurement Software	✓	~	✓			
CDMA2000	MX269024A-001	All Measure Function	✓	✓	✓			
	MX269026A	EV-DO Forward Link Measurement Software	~	~	✓			
1xEV-DO	MX269026A-001	All Measure Function	✓	✓	✓			
GSM/EDGE	MX269013A	GSM/EDGE Measurement Software	~	✓	✓			
EDGE Evolution	MX269013A-001	EDGE Evolution Measurement Software	✓	✓	✓			
Multi-TDMA systems	MX269017A	Vector Modulation Analysis Software	~	√*2	~	√ + ^{*3}	√ + ^{*3}	√ + ^{*3}
Analog (FM/ΦM/AM)	MX269018A	Analog Measurement Software	√*4	No				
WLAN IEEE802.11a/b/g/n/j/p	MX269028A	WLAN (802.11) Measurement Software (Supports IEEE802.11n/11a/11b/11g/11j/11p)	~	\checkmark	~	~		
WLAN IEEE802.11ac (80 MHz)	MX269028A-001*5	802.11ac (80 MHz) Measurement Software	~	~	~	~	\checkmark	~
WLAN IEEE802.11a/b/g/n	MX283027A	Wireless Network Device Test Software	~	~				
WLAN	MX283027A-001	WLAN Test Software	✓	✓	~	✓		
Bluetooth	MX283027A-002	Bluetooth Test Software	✓	✓	~	✓		
Mobile WiMAX	MX269010A	Mobile WiMAX Measurement Software	✓	\checkmark	✓	✓		

*1: The LTE-Advanced Carrier Aggregation measurement range varies, depending on the Analysis Bandwidth Extension option configuration. *4: MS2830A-043 can implement only either MS2830A-020/021/088 or MS2830A-066. By the system that MS2830A-066 is necessary, MS2830A-020/021/088 is not added to MS2830A-043.

*2: By the measurement of the narrowband signal, add MS2830A-066. (Channel bandwidth: x kHz to 100 kHz) MS2830A-044/045 cannot be installed MS2830A-066.

*5: Requires MX269028A. The IEEE802.11ac measurement range varies, depending on the Analysis Bandwidth Extension option configuration.

*3: The Symbol Rate setting range varies, depending on the option configuration.

Measurement Software for Smart Meter

This software is for PC. This software supports automatic measurement of the PHY layer and protocol analysis of the PHY/MAC layer of smart utility network wireless communications (Wi-SUN).

- Wi-SUN® is a registered trademark of Wi-SUN Alliance.

Communications Systems	Model	Name		
Wi-SUN	MX705010A	Wi-SUN PHY Measurement Software		
	MX705110A	Wi-SUN Protocol Monitor		

The MX705010A^{*1} supports automatic measurement of Wi-SUN Alliance PHY Conformance test cases. The MS2830A is controlled by remote commands from this software

*1: - Cannot be installed in MS2830A.

- Requires the latest firmware of MS2830A.

This service, which provides updated versions of firmware and software for downloading by product customers, is available on Anritsu's website. https://www1.anritsu.co.jp/Download/MService/Login.asp

l	Options configuration examples				
I	MS2830A-041, MS2830A-002, MS2830A-006, MX269017A,				
I	MS2830A-020, MS2830A-022, MS2830A-027, MX269902A				

MX705110A^{*2} is possible to check the details of a Wi-SUN protocol. The wireless signals^{*3} between communicating wireless equipments are captured as I/Q data using the MS2830A digitize function and data analysis is performed by this software. Data analysis displays the PHY/MAC frame format, Tx timing, etc.

*2: - Cannot be installed in MS2830A.

- Requires the latest firmware of MS2830A.
- Requires MS2830A-006.

*3: IEEE 802.15.4g/e (GFSK)

See each software catalog for more details.

SG: Vector Signal Generator

The MS2830A incorporates a Vector Signal Generator option with frequency range from 250 kHz to 3.6 GHz/6.0 GHz, and a 120 MHz vector modulation band. Due to the excellent level accuracy and ACLR performance, it is ideal for using with the spectrum analyzer and signal generator functions to measure amplifiers, filters, and antennas.

Features

Frequency range
 250 kHz to 3.6 GHz (Opt-020)
 250 kHz to 6.0 GHz (Opt-021)

Output level range

-40 to +20 dBm (Standard) -136 to +15 dBm (Opt-022)

Vector modulation band: 120 MHz

Waveform memory

64 Msa (Standard), 256 Msa (Opt-027)

High level accuracy

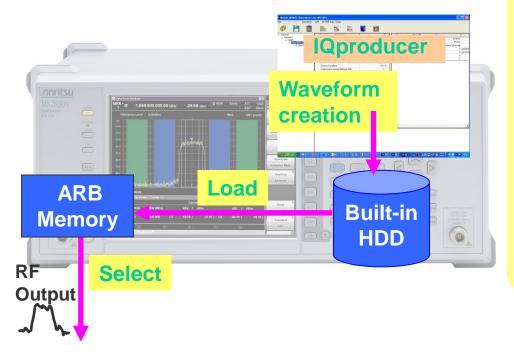
Absolute Level Accuracy: ±0.5 dB, Linearity: ±0.2 dB (typ.)

Excellent ACLR performance

 \leq -64 dBc @ 5 MHz offset

 \leq –67 dBc @ 10 MHz offset

AWGN function (Opt-028)


Wanted Signal + AWGN Output Waveform

-Vector Signal Generator Option-MS2830A-020 3.6 GHz Vector Signal Generator MS2830A-021 6 GHz Vector Signal Generator

SG: Communication System Line Up

The pre-installed standard waveform patterns are bundled free-of-charge. Moreover, optional PC software (IQproducer) generates waveform patterns with any parameter settings.

In addition, any waveform pattern can be created using IQ data output from simulation tools.

Versatile communication system

Built-in waveform patterns

- W-CDMA HSDPA CDMA2000
- CDMA2000 1xEV-DO GSM/EDGE
- Digital Broadcast (ISDB-T/BS/CS/CATV)
- WLAN (IEEE802.11a/11b/11g) Bluetooth®

Option waveform patterns

- AWGN (Requires MS2830A-028)
- CDMA2000 1xEV-DO (Reverse Link)

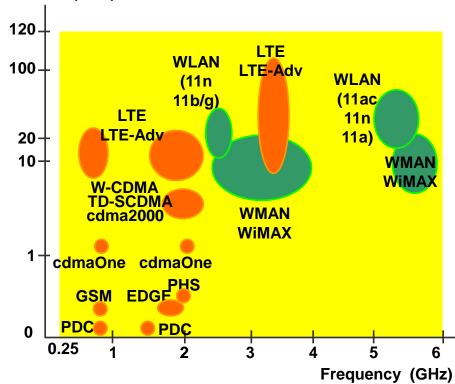
IQproducer (waveform creation software)

- -W-CDMA
- -3GPP-LTE (FDD)* / LTE-Advanced (FDD)*
- -3GPP-LTE (TDD)* / LTE-Advanced (TDD)*
- -HSDPA/HSUPA*

-TD-SCDMA*

- -TDMA (PDC, PHS, ARIB link)*
- -Multi-carrier* -Mobile WiMAX*
- -WLAN (11a/b/g/n/j/p)* / WLAN 11ac*

* option


Arbitrary waveform creation

Outputs ASCII IQ data from EDA tool converted to waveform pattern for MS2830A-020/021

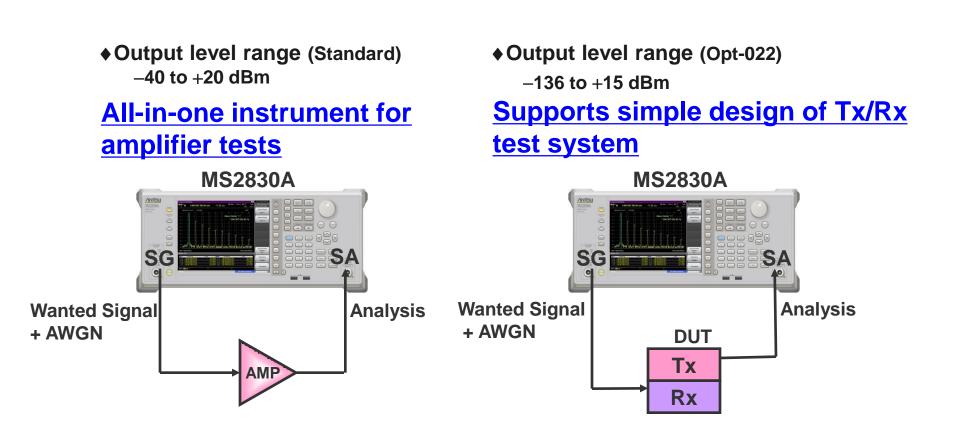
See each IQproducer catalog for more details.

SG: Frequency Range and Modulation Band (Vector SG)

This all-in-one hardware SG has the performance (6 GHz frequency, 120 MHz modulation band) to output signals for main communication systems.

Bandwidth (MHz)

Frequency range up to 6 GHz


The frequency range covers 250kHz to 3.6GHz/6.0GHz and 5 GHz band wireless LAN, WiMAX, and 4G.

♦120 MHz Vector modulation band

The wideband 120 MHz vector modulation is achieved using a built-in baseband signal generator.

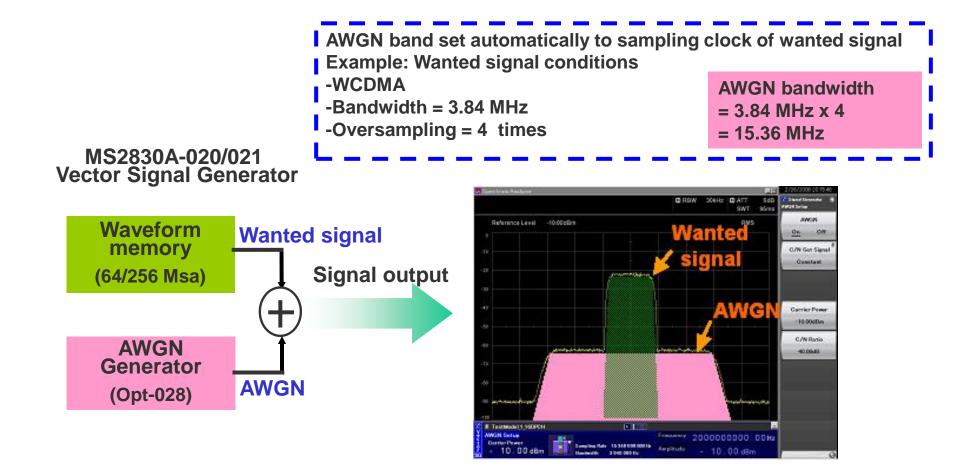
SG: Output Level Range (Vector SG)

The Vector Signal Generator standard option supports high outputs of +20 dBm max. Installing the MS2830A-022 Low Power Extension for Vector Signal Generator supports low-power outputs up to -136 dBm. It is ideal for Rx sensitivity tests.

Superior ACLR Performance

The superior ACLR performance is useful for device Tx tests of amplifiers, etc. The MX269904A Multi-Carrier IQproducer software generates multiple carrier waveform patterns.

ACLR (measured value)

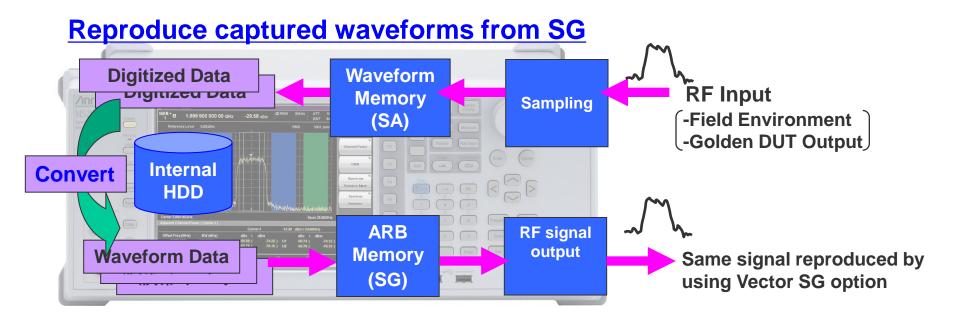

(W-CDMA, TestModel1 64DPCH, 2 GHz, SG output -10 dBm)

*: Value only data selected at random, and not guaranteed performance

SG: AWGN (Vector SG) (Opt.028)

Built-in AWGN Generator for Dynamic Range Tests

This can add AWGN (Additive White Gaussian Noise) to the wanted wave in the arbitrary waveform memory. It is useful for Tx dynamic range tests.

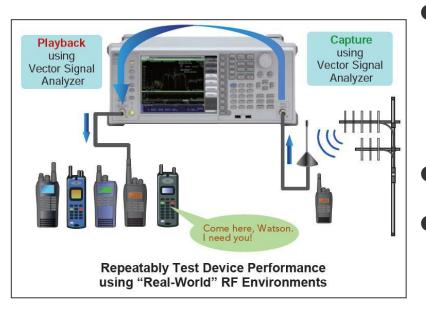


Merits of All-in-One SA + SG (1/3) Easy reproduction of field environment

Digitizer Function + Vector SG Option

Captured waveforms are converted to Vector SG waveform patterns using the built-in PC software. These patterns are read by the Vector SG to replay the signal.

The field environment is easily reproduced at the bench top to use captured device signals with a stable golden DUT for debugging and higher reliability testing.



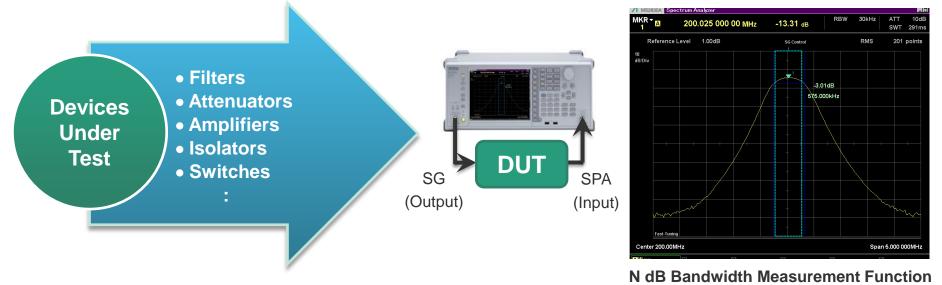
Merits of All-in-One SA + SG (2/3) Easy reproduction of field environment

Digitizer Function + Vector SG Option

Capture & Playback Function

The MS2830A provides *Capture & Playback* functionality that enables laboratorygrade testing of transceiver systems using real world signals. Using the optional integrated Vector Signal Analyzer and Vector Signal Generator of the MS2830A, *Capture & Playback* allows users to conveniently capture up to 100 MHz of spectrum and play it back at any designated frequency and amplitude, making it easy to determine device performance margins.

Bandwidth and Time Limits


Minimum 10 kHz Bandwidth (2000 s maximum duration)* Maximum 100 MHz Bandwidth (500 ms maximum duration)*

- *: Maximum bandwidth depends upon vector signal analyzer options installed (Opt. 006/005/077/078). Maximum playback duration depends upon whether vector signal generator memory upgrade (Opt. 027) is installed.
- Captured signal may be freely tuned to any output frequency and amplitude supported by the vector signal generator.
- Any section of the captured waveform record may be selected and played back.
 - ✓ Enables user to isolate and reproduce specific signal bursts
 - ✓ Enables user to change duty cycle of pulsed waveforms

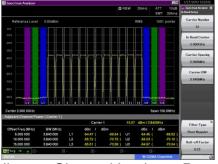
Merits of All-in-One SA + SG (3/3) Evaluation of Filter and Amplifier

Internal Signal Generator Control Function Option (Opt.052)

The Internal signal generator control function operates in conjunction with the spectrum analyzer (SPA) function and built-in signal generator (SG) option to measure the transmission characteristics of filters, amplifiers, etc.

Measure Both Passive and Active Devices

The DUT input signal source has a frequency range of 100 kHz to 6 GHz, an output level range of -136 to +15 dBm, a step resolution of 0.01 dB, and a level accuracy of \pm 0.5 dB to measure both passive and active devices using the built-in high-performance SG.


✓ Accurate Frequency Characteristics

The SPA function displays the measured frequency characteristics results with an excellent linearity error of just ±0.07 dB to display the frequency characteristics of bandpass filters, etc., accurately.

Useful Measurement Functions for Evaluating Tx Characteristics (1/21)

The MS2830A has all the versatile built-in measurement functions needed for evaluating Tx characteristics. Using functions matching measurements supports simple tests according to specifications.

Measure Function	SPA ^{*1}	VSA *2
Channel Power	✓	\checkmark
Occupied Bandwidth	✓	\checkmark
Adjacent Channel Leakage Power	\checkmark	\checkmark
Spectrum Emission Mask	\checkmark	
Burst Average Power	\checkmark	\checkmark
Spurious Emission	\checkmark	
AM Depth		\checkmark
FM Deviation		\checkmark
Multi-marker & Marker List	\checkmark	\checkmark
Highest 10 Markers	\checkmark	\checkmark
Limit Line	\checkmark	
Frequency Counter	✓	
2-tone 3rd-order Intermodulation Distortion	\checkmark	
Annotation Display (On/Off)	\checkmark	
Power Meter	Independent function ^{*3}	
Phase Noise	Opt. 010	
Noise Figure	Opt. (D17 ^{*4}

Adjacent Channel Leakage Power

Spurious Emission

Occupied Bandwidth

*1: SPA (Spectrum Analyzer)

*2: VSA (Vector Signal Analyzer), Requires Opt. 005/006/077/078

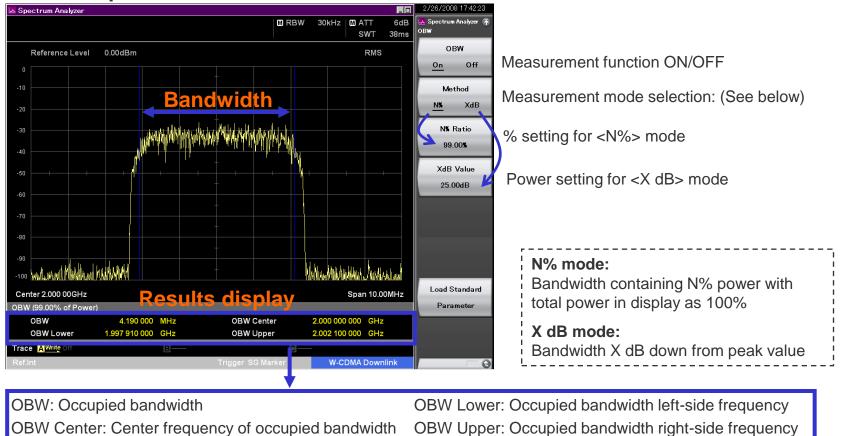
*3: Use USB Power Sensors

*4: Use Noise Sources (Noisecom, NC346 series)

Channel Power

Channel power measurement using three types of filter (Rectangular, Nyquist, Root Nyquist) is supported.

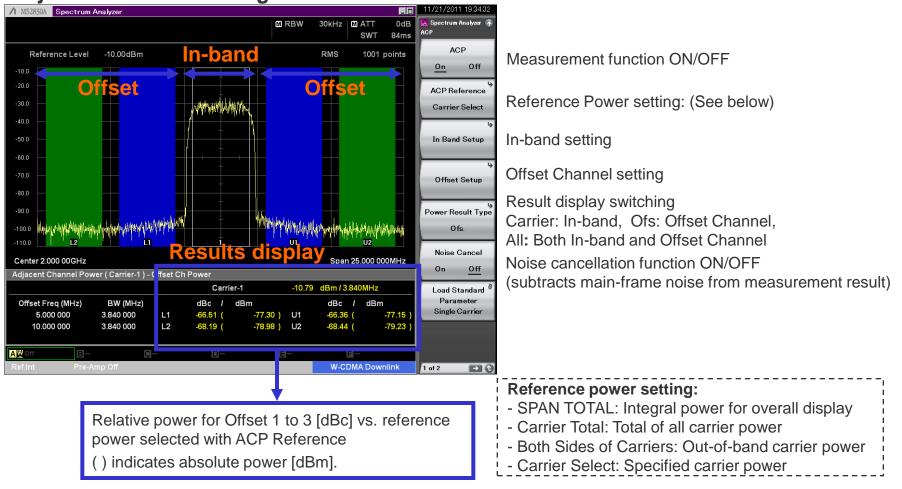
2/26/2008 17:41:07 Spectrum Analyzer -101 30kHz 6dB Spectrum Analyze RBW ATT M Channel Powe SWT 38ms Channel Power Reference Level 0.00dBm RMS Measurement function ON/OFF Off On Channel Center Bandwidth Channel center frequency 2.000GHz Channel Width Channel bandwidth 5.000MHz -40 Filter Type -50 Rect Filter: -60 Rectangular, Nyguist, Root Roll-off Factor Nyquist Load Standard Results display pan 10.00 MHz Center 2.000 00GHz Parameter Channel Power Mean Power Absolute Power Channel Center 2.000 000 000 GHz -77.97 dBm / Hz Channel Width 5.000 000 MHz -10.98 dBm / 5.000MHz Trace Awrite W-CDMA Downlink Channel Center: Set value for channel center frequency Absolute Power: Power per Hz (Density) Channel Width: Set value for channel bandwidth In-zone power (Integration)


Channel Power Measurement

Occupied Bandwidth

Occupied bandwidth is measured in two modes—N% and X dB.

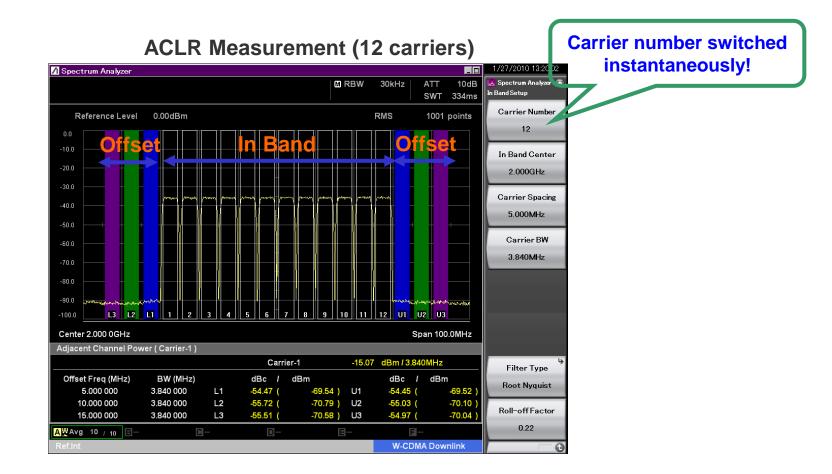
Occupied Bandwidth Measurement


Useful Measurement Functions for Evaluating Tx Characteristics (4/21)

Adjacent Channel Leakage Power (ACLR)

This function measures adjacent channel leakage power.

Adjacent Channel Leakage Power Measurement



Useful Measurement Functions for Evaluating Tx Characteristics (5/21)

Adjacent Channel Leakage Power (ACLR)

In Band can be set from 1 to 12 carriers and switched instantaneously on the screen. Moreover, true ACLR performance is measured using the noise cancellation function to subtract main-frame noise from the measurement result.

Useful Measurement Functions for Evaluating Tx Characteristics (6/21)

SPA Adjacent Channel Leakage Power (ACLR) Offset channel can be set from 1 to 8 and switched instantaneously on the screen. Offset number switched ACLR Measurement (12 carriers / 8 offsets) instantaneously! _ 🗆 11/21/2011 20:24 39 A MS2830A Spectrum Analyzer M RBW 30kHz ATT Spectrum Analyzer 10dB Offset Setup - Advanced SWT 500ms Edit Offset Numb RMS Reference Level -10.00dBm 1001 points -10.0 Offset -20.0 Offset -30.0 -40.0 On Off -50.0 -60.0 Offset -70.0 40.00MHz -80.0 -90.0 100.0 110.0 18 17 16 15 14 13 U1 U2 U3 U4 U5 U6 U7 U8 Center 2.000 0GHz Span 150.000 000MHz Adjacent Channel Power (Carrier-1) - Offset Ch Power Carrier-1 -16.88 dBm / 3.840MHz Offset Freq (MHz) BW (MHz) Filter Type Roll-off dBc dBm dBc dBm 1 Ch BW

Slide37	

-68.86) U1

-69.25) U2

-69.38) U3

-69.75) U4

-71 02 \ LI5

-71.34) U6

-52.26 (

-52 44 1

-52.65

-52.77 (

-54.07

-54.38 (

-55.01 (

-55.14 (

-69.14)

-69.32)

-69.53)

-69.65)

-70.95)

-71.26)

-71.89)

-72.02)

W-CDMA Downlink

F -

3.840MHz

Filter Type

Root Nyquist

Roll-off Factor

0.22

5.000 000

10.000 000

15.000 000

20.000 000

25.000 000

30.000 000

35.000 000

40.000 000

AWAVg 10 / 10 🗉

3.840 000

3.840 000

3.840 000

3.840 000

3.840 000

3.840 000

3.840 000

3.840 000

R.Nyquist

R.Nyquist

R.Nyauist

R.Nvauist

R.Nvauist

R.Nyquist

R.Nyquist

R.Nyquist 0.22

0.22 L1

0.22 L3

∟4

15

L6

L8

0.22 L2

0.22

0.22

0.22

0.22

-51.98 (

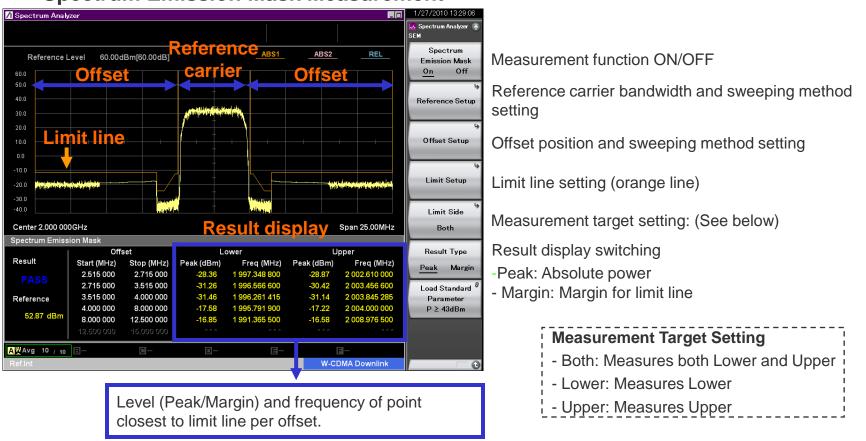
-52.37 (

-52.50 (

-52.87 (

-54.14 (

-54,46 (

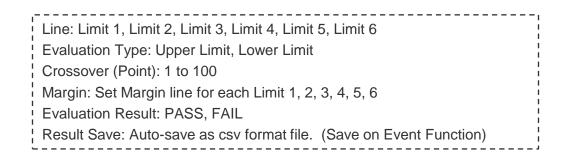

L7 -55.31 (-72.19) U7

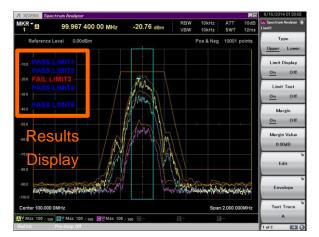
-55.46 (-72.34) U8

Spectrum Emission Mask (SEM)

Offset limit lines can be set for up to 12 segments. The peak frequency and level in each segment are displayed and parts exceeding the limit line are indicated in red. Also, when a limit line is exceeded at just one part, Fail is displayed in red at the Result displays at the bottom left of the screen.

Spectrum Emission Mask Measurement

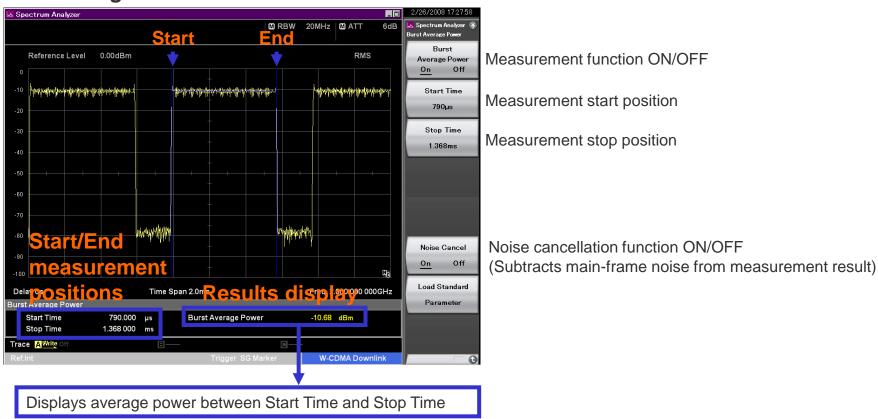

Limit Lines


Up to six types of Limit line can be set on the spectrum display (frequency domain). In addition to setting the frequency and level of crossover points manually in sequence from the low frequency, after creating the right half of a line, the left half can be created by reversing and copying the right half, to set a symmetric limit line. Additionally, a Limit line that traces the measured waveform can be created using the Limit Envelope function. A margin can be set on the Limit line in the amplitude direction.

When the waveform is above or below the Limit line, it is evaluated automatically as PASS or FAIL. Evaluation is also possible with an added margin. The target evaluation line can be chosen from any of six types.

When the waveform matches the evaluation conditions (Event), it can be saved automatically as a csv format file. Any one of the following five Event types can be selected. (Save on Event Function)

- (1) Limit Fail: Saves waveform file when evaluation result is Fail
- (2) Limit Pass: Saves waveform file when evaluation result is Pass
- (3) Margin Fail: Saves waveform file when evaluation result including Margin is Fail
- (4) Margin Pass: Saves waveform file when evaluation result including Margin is Pass
- (5) Sweep Complete: Saves waveform file at every measurement regardless of evaluation result


PASS/FAIL evaluation is performed by changing the input signal level. The evaluation results for the five line types can be displayed simultaneously on one screen.

Average In-burst Power Measurement

The average power of specified burst segments is displayed in the time domain. Measurement only requires setting the measurement start and end positions on the screen.

Average In-burst Power Measurement

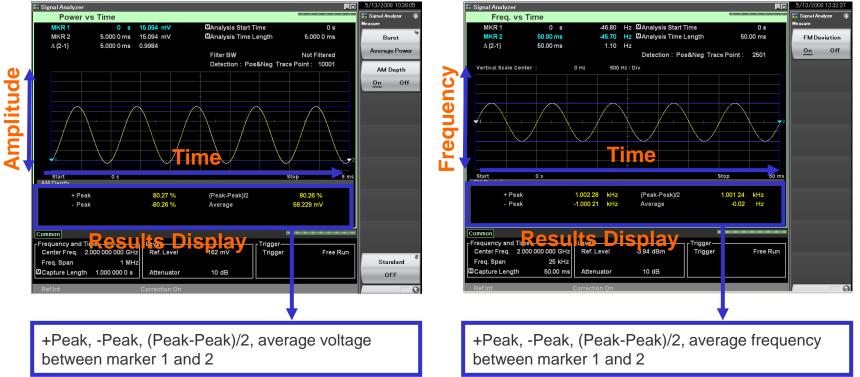
Spurious Emission

The peak frequency and level in each segment and the standard margin are displayed; parts exceeding the limit line are indicated in red. Also, Fail is displayed in red at the bottom left of the Results display even when the limit line is exceeded at only one part. A maximum of 20 segments can be set.

Spurious Emission Measurement 🖊 Spectrum Analyzer M RBW Spectrum Anal 1MHz ATT 10dB VBW 1MHz SWT 3ms Spurious Limit Line^{Segment 5} 0.00dBm Positive Reference Level 10001 points Emission On Off -10.0 Time Domain Measurement: 20.0 Segment Setup Spurious can be swept (detected) for up to 20 -30.0 Spurious 40.0 segments using the Zero Span measurement Limit Setup -50.0 function. -60.0 Displayed Different parameters (RBW/VBW) from segment -70.0 Segment والمرافقة المراجع والمحافظ والمراجع والمراجع والمراجع والمراجع والمحافظ المحافظ المحافظ والمحافظ والمحاف -801 sweeping can be set. مشكور مفطلة الامد الشطاطين وجرعت والإط معكلا ومحصولة بلاء بأنه بلوجها تجافل المتناج والجام ومصادقة وتراطره التم Page of Summary Time domain measurements can switched ON/OFF. Results Displa Auto Manual Start 2.000 0GHz Stop 3.000 0GHz Spurious List by Worst Method Previous Page Limit No. Segment Frequency Peak Margin -13.00 dl Result 2 2 293 280 00 kH 86 21 dBn 73.21 dE -13.00 dBm -83 19 dBm 70 19 dF -13.00 dBm Next Page -73.45 dBm 60 45 dF -13.00 dBm 00 GHz -71.65 dBm 0 00 GHz -13.00 A Vg 1 / 1 🖪 No Standard Parameter 1 of 2

Detected spurious: Segment number, frequency, level (Peak/Margin), limit line

Useful Measurement Functions for Evaluating Tx Characteristics (11/21)


AM: Power vs. Time

This function measures the amplitude modulation.

FM Shift Measurement Function: Frequency vs. Time VSA

FM Shift Measurement

This function measures frequency shift.

AM Measurement

Useful Measurement Functions for Evaluating Tx Characteristics (12/21)

Phase Fluctuation Display Function: Phase vs. Time

This function displays phase time fluctuations.

/ MS2830A Signal Analyzer - 0 6/8/2011 16:58:53 🕮 Signal Analyze Phase vs Time Trace Mode MKR 1 deg. Analysis Start Time 0 s 110.22 0 s MKR 2 2.000 000 s deg.MAnalysis Time Length 119.72 2.000 000 00 s 2.000 000 9.50 Spectrum ∆(2-1) s deg. Phase Ref 0 s Detection : Sample Trace Point : 10001 [deg.] Vertical Scale Center 0.00 deg. 0.00 deg 36.00 deg. / Div Phase Offset Power vs Time 180.0 144.0 108.0 🍸 Frequency vs Time 72.0 36.0 Phase vs Time 0.00 -36.0 CCDF -72.0 108.0 Time 144.0 Spectrogram 180.0 Start 0 s 2.000 000 00 s Stop Common Frequency and Time-Level-Trigger Center Freq. 1.000 000 000 GHz Ref. Level 0.00 dBm Trigger Free Run Freg. Span 31.25 MHz Capture Length 2.000 000 00 s Attenuator 10 dB £.

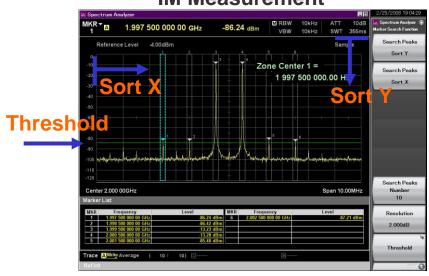
Phase Fluctuation Display

Phase Fluctuation: Phenomena that are hard to spot using !a spectrum analyzer, such as phase drift due to switching and transients, can be evaluated.

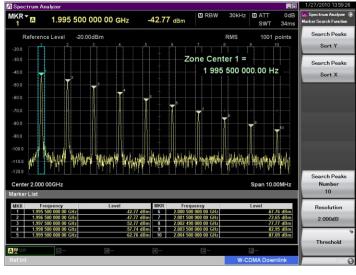
VSA]

Phase

Zone Marker Function


This displays the Peak value within the specified range. It is useful for measuring unstable signals with fluctuating frequency and noise.

Multi-Marker/Highest 10 Function


This automatically searches for the ten highest peaks sorted from highest level (Sort Y) or lowest frequency (Sort X).

In addition, setting a threshold eliminates unnecessary searching.

This can be used for IM and harmonic, etc., measurements.

IM Measurement

Harmonic Measurement

SPA

VSA

Gate Sweeping

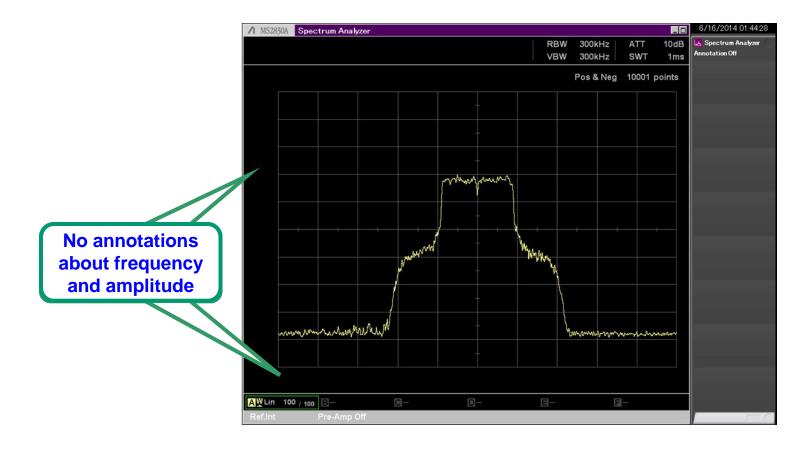
This function performs sweeping at the specified gate timing. The spectrum of the burst-on signal is easily displayed, etc., because sub-screens can be displayed simultaneously in the time domain.

Frequency Counter

Set [Freq. Count] to ON to use the frequency counter function. [Gate Time] sets the frequency counter measurement time.

/20/2009 15:54:32 Spectrum Analyzei 1/17/2010 13:3 A Spectrum Analyze MKR 🕶 🔼 100kHz 10dE RBW ATT MKR RBW 1MHz ATT 10dE Spectrum An 1.998 875 000 00 GHz -31.23 dBm 18.37 dBm SWT 15ms 1.999 975 015 257 GHz M SWT 50ms Fred Count Cnt Gate Sween Freq. Count Reference Level 0.00dBm RMS 401 points Reference Lev Results RMS 1001 points Off On Off On -10.0 Display Gate View Gate Time On Off 100ms -20.0 mmanum Gate View -40 O Setting .<u>40 f</u> Gate Delay -60.0 5.00000ms -50.0 Gate Length mannamannan 2.9ms 1001 Gate Source Center 2.000 0GHz Span 50.00MHz Wide IF Video 3MHz RBW RMS 10001 points Gate Slope an n -50.0 Fall Rise 100.0 -100.0 Gate Level Freq. 2.000 000 000GHz Center 2.000GHz Span 1.000GHz Time Span 10 Delay 0s (Wide IF Video) -33dBm AW 2 of 2 Gate Time: Sets frequency counter measurement time

2-tone 3rd-order Intermodulation Distortion


By inputting two different frequency CW signals (desired waves), two-tone third order intermodulation distortion is generated close to the desired waves according to non-linear characteristics of DUT. Then, TOI (Third Order Intercept) is calculated from the two-tone third order intermodulation distortion.

	5/30/2012 10:27:40	Results Dis	play
	гот	ltem	Description
Reference Level 0.00dBm Pos & Neg 10001 points	TOI	TOI (dBm)	Displays the calculated TOI. The Worst value (lower) between two calculated values (lower and upper) is displayed.
-20.0 -20.0 -2.tone 3rd-order -30.0 -40.0 -2.tone 3rd-order 	Frequency Auto Tune Tone Frequency Auto Manual	Amplitude (dBc)	Displays the level ratio of two-tone third-order intermodulation distortion to the desired wave. The Worst value (larger) between two calculated values (lower and upper) is displayed.
-50.0 -60.0 -70.0 -90.0 -90.0	Lower Tone Frequency 999.949 960MHz Upper Tone Frequency	Lower 3rd	Two-tone third-order intermodulation distortion that occurs at the lower frequency of the desired wave. Frequency, signal level, level ratio to the desired wave, and calculated TOI are displayed.
-100.0 Center 0.999 999 98GHz Span 400.160kHz	Search	Lower Tone	Desired wave that includes the lower frequency component. Frequency and signal level are displayed.
TOI Frequency Amplitude Amplitude TOI (dBm) (GHz) (dBm) (dBc) (dBm) 1.69 Lower 3rd 0.999 850 000 +43.21 -29.94 1.69	<u>On</u> Off	Upper Tone	Desired wave that includes the upper frequency component. Frequency and signal level are displayed.
Amplitude (dBc) Lower Tone 0.999 949 960 -13.28 -29.94 Upper Tone 1.000 050 000 -13.27 -29.94 Upper 3rd 1.000 149 999 -43.30 -30.02 1.74		Upper 3rd	Two-tone third-order intermodulation distortion that occurs at the upper frequency of the desired wave.
AWOff B- D- B- D- Ref.Int Pre-Amp Off Image: Compare the second seco	1 of 2 🕞 🗘	opper ora	Frequency, signal level, level ratio to the desired wave, and calculated TOI are displayed.

Annotation Display (On/Off)

Screen annotations can be set to On or Off. Annotations about frequency, amplitude, etc., are not displayed at the Off setting.

Power Meter Function

Power meter function can connect a USB power sensor to the MS269xA and read the measurement values.

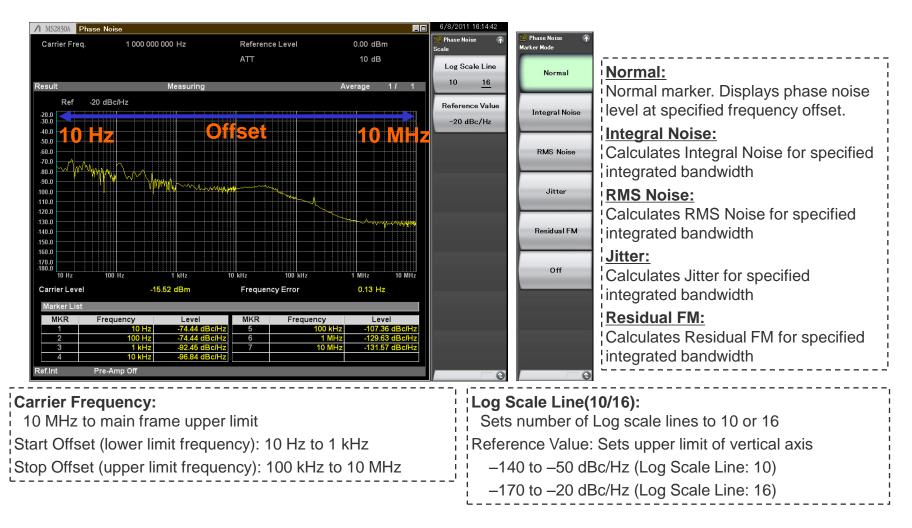
Measurement Results

Power: [dBm], [W]

Relative power: [dB]

Compatible USB power sensors

Model	Frequency	Dynamic Range
MA24104A*	600 MHz to 4 GHz	+3 to +51.76 dBm
MA24105A	350 MHz to 4GHz	+3 to +51.76 dBm
MA24106A	50 MHz to 6 GHz	–40 to +23 dBm
MA24108A	10 MHz to 8 GHz	–40 to +20 dBm
MA24118A	10 MHz to 18 GHz	–40 to +20 dBm
MA24126A	10 MHz to 26 GHz	–40 to +20 dBm


*: MA24104A has been discontinued.

■Installing the Anritsu PowerXpertTM

Installing the Anritsu PowerXpert[™] PC application software for the Anritsu USB Power Sensor in the MS2830A supports various measurement functions offered by Anritsu PowerXpert[™], as well as use of other USB power sensors by the MS2830A. Anritsu PowerXpert[™] for the MS2830A can be downloaded from the MS2830A and MS2830A Microwave product pages at the Anritsu website. When using the Anritsu PowerXpert[™] software with a PC, download the latest version from the USB Power Sensor product page at the Anritsu website.

Phase Noise Measurement Function [Opt-010]

This function measures the phase noise over a frequency offset range of 10 Hz to 10 MHz.

Noise Figure Measurement Function [Opt.017]

Noise Figure is measured with the measurement method of Y-factor

method which uses a Noise Source.

Frequency Mode: Fixed/List/Sweep

DUT Mode: Amplifier

Screen Layout: Graph/Table

Measurement Results Display

■ Graph/List/Spot

Displays measurement results for each trace (Trace 1/Trace 2).

- Noise Figure (NF) [dB]
- Noise Factor (F) [Linear]
- 🔶 Gain
- Y-Factor: Power ratio when Noise Source is turned ON/OFF
- T effective: Effective noise temperature
- P Hot: Power measured when Noise Source is On.
- P Cold: Power measured when Noise Source is Off.

3W	4 000 000Hz	ATT	0dB	Loss Status	Before:Off	🤗 Noise Figure
Start Frequency	30 000 000Hz	DUT	Amplifier		After:Off	Measure
Stop Frequency	6 000 000 000Hz	T cold	296.50K	CAL Status	ок	
Total Point	51			ENR Status	Table	Trace
Result						
Reference	3.00 dB 1.000 dB/div	Noise Figure	MKR2	2 059 8	2.8288dB	Storage
700						otorage
500			~ ~		\sim	Layout
200						Graph Table
1.00						
-1.00						
Reference	12.00 dB 2.000 dB/div	Gain	MKR2	2 059 8	000 000Hz	
					1.657 105	
20.00					1.657 105	BW
18.00						BW 4.000MHz
1800 1600 1400						4.000MHz
1800		B				4.000MHz Analysis Time
1800 1600 1400 1200 1000 800						4.000MHz Analysis Time Mode
1800 1600 1400 1200						4.000MHz Analysis Time
1800 1600 1200 1000 800 600 400						4.000MHz Analysis Time Mode <u>Auto</u> Manual Analysis Time
1800 1400 1200 1000 800 400 Frequency Min	30 000 00		Frequency Max	6 000 0	00 000Hz	4.000MHz Analysis Time Mode <u>Auto</u> Manual Analysis Time (Ave. Time)
1800 1400 1200 000 400 Frequency Min MKR	Fre	quency T	race1 Level	6 000 00 Trace2 Leve	00 000Hz	4.000MHz Analysis Time Mode <u>Auto</u> Manual Analysis Time (Ave. Time) 16.19ms
1000 1000 1000 000 600 400 Frequency Min	Fre-	quency T 0 000Hz	race1 Level	6 000 00 Trace2 Leve	00 000Hz	4.000MHz Analysis Time Mode <u>Auto</u> Manual Analysis Time (Ave. Time)
1800 1400 1200 000 400 Frequency Min MKR	Fre 30 00 2 059 3 4 089 9	quency T	race1 Level	6 000 00 Trace2 Leve	00 000Hz	4.000MHz Analysis Time Mode <u>Auto</u> Manual Analysis Time (Ave. Time) 16.19ms

Measurement Result: Example of Graph display (Frequency Mode: Sweep, Screen Layout: Graph)

	4 000 000Hz	ATT DUT		0dB Amplifier	Loss Status	Before:Off After:Off	P Noise Figure Measure
		1 0010		290.301	CAL Status ENR Status	OK Table	Trace
Fr	equency		Noise Figure	•	Gain		Storage
30 (000 000H	z	10.66039dB	1	7.40024d	в	
100 (000 000H	z	3.08945dB	1	6.59371d	в	Layout
1 000 (000 000H	Z	2.05194dB	1	4.53178d	в	Graph Table
2 000 0	000 000H	z	2.93286dB	1	2.31772d	в	
3 000 0	000 000H	z	3.10655dB	1	0.24146d	в	
6 000 0	000 000H	z	5.07462dB	1	1.33644d	в	
800 (000 000H	z	1.97577dB	1	5.33487d	в	BW
2 100 0	000 000H	z	2.81561dB	1	2.24213d	в	4.000MHz
							Analysis Time Mode <u>Auto</u> Manu
							Analysis Time (Ave. Time) 16.19ms
icy Min	30 000 00	0Hz	Freque	ncy Max	6 000 00	0 000Hz	Cal Setup
	Fr 300 1000 2000 3000 6000 2100 2	8 Frequency 30 000 000H 1000 000 000H 2 000 000 000H 3 000 000 000H 6 000 000 000H 800 000 000H 2 100 000 000H	4000000Hz ATT DUT T cold Frequency 30000000Hz 100000000Hz 100000000Hz 2000000000Hz 300000000Hz 300000000Hz 800000000Hz 2100000000Hz 2100000000Hz	4 000 000Hz ATT DUT T cold 8 Trodd 1000 10.66039dB 1000 0000Hz 1.08945dB 1000 00000Hz 2.05194dB 2000 0000 2.93286dB 3000 000Hz 3.10655dB 3000 000Hz 1.97577dB 2100 000 2.81561dB	4 000 000Hz ATT DUT T cold 0eB Ampilifier 23050K Frequency Noise Figure 30 000 000Hz 10.66039dB 1 100 000 000Hz 2.05194dB 1 2 000 000 000Hz 2.93286dB 1 3 000 0000Hz 2.95194dB 1 2 000 000 000Hz 3.10655dB 1 3 000 000 000Hz 3.10655dB 1 800 000 000Hz 1.97577dB 1 2 100 000 000Hz 2.81561dB 1	4 000 000Hz ATT DUT T cold 0dB 2950K/ Los Status (AL Status 2000 000 000Hz Frequency Noise Figure Gain 30 000 000Hz 10.66039dB 16.59374d 100 000 000Hz 2.05194dB 14.53178d 2 000 000 000Hz 2.93286dB 12.31772d 3 000 0000Hz 3.10655dB 10.24146d 6 000 000 000Hz 1.97577dB 15.33487d 2 100 000 000Hz 2.81561dB 12.24213d	4 000 000Hz ATT DUT T cold Oth Amplifier Before-Off CAL Status Defere-Off Amplifier 8 205 500 CAL Status T cold T cold

Measurement Result: Example of List display (Frequency Mode: List, Screen Layout: List)

MS2830A Noise Figure						10/24/2012 19.3
BW	4 000 000Hz	ATT DUT T cold	Odl Amplifie 296.50	r	Before:Off After:Off OK Table	Proise Figure Trace Trace Select <u>1</u> 2
Fre	quency 00 000H		Noise Figure 2.09268dB	Gain 14.55470		Result Type Noise Figure
Noise Figure			NF Max	< 2.120	25dB	
NF Current	2.0828	37dB	NF Mir	1 2.062	44dB	
NF Average	2.0926	68dB	NF Max to Mir	n 0.057	81dB	
						Reference 3.00dB
						Scale/Div 1.000dB
Ref.Int Pre-Amp (Dn					1

Measurement Result: Example of Spot display (Frequency Mode: Fixed)

Noise Figure Measurement Function [Opt.017]

Noise Source

Supports noise sources from Noisecom NC346 series. NC346 series models and summary specifications are listed below. See the NC346 series catalog and datasheet for detailed specifications.

Madal	DE Connector	Frequency	Frequency Output ENR VSWR (maximum @ on/off) [GHz]		DC Offeet	DC Block			
Model	RF Connector	[ĠHz]	[dB]	0.01 to 5	5 to 18	18 to 26.5	26.5 to 40	DC Offset	DC BIOCK
NC346A	SMA (M)	0.01 to 18.0	5 to 7	1.15:1	1.25:1	—	—	No	Not required
NC346A Precision	APC3.5 (M)	0.01 to 18.0	5 to 7	1.15:1	1.25:1	—	—	No	Not required
NC346A Option 1	N (M)	0.01 to 18.0	5 to 7	1.15:1	1.25:1	—	—	No	Not required
NC346A Option 2	APC7	0.01 to 18.0	5 to 7	1.15:1	1.25:1	—	—	No	Not required
NC346A Option 4	N (F)	0.01 to 18.0	5 to 7	1.15:1	1.25:1	—	—	No	Not required
NC346B	SMA (M)	0.01 to 18.0	14 to 16	1.15:1	1.25:1	—	—	No	Not required
NC346B Precision	APC3.5 (M)	0.01 to 18.0	14 to 16	1.15:1	1.25:1	—	—	No	Not required
NC346B Option 1	N (M)	0.01 to 18.0	14 to 16	1.15:1	1.35:1	—	—	No	Not required
NC346B Option 2	APC7	0.01 to 18.0	14 to 16	1.15:1	1.25:1	—	—	No	Not required
NC346B Option 4	N (F)	0.01 to 18.0	14 to 16	1.15:1	1.35:1	—	—	No	Not required
NC346D	SMA (M)	0.01 to 18.0	19 to 25*1	1.50:1	1.50:1	—	—	No	Not required
NC346D Precision	APC3.5 (M)	0.01 to 18.0	19 to 25 ^{*1}	1.50:1	1.50:1	_	_	No	Not required
NC346D Option 1	N (M)	0.01 to 18.0	19 to 25*1	1.50:1	1.75:1	—	—	No	Not required
NC346D Option 2	APC7	0.01 to 18.0	19 to 25 ^{*1}	1.50:1	1.50:1	—	—	No	Not required
NC346D Option 3	N (F)	0.01 to 18.0	19 to 25 ^{*1}	1.50:1	1.75:1	_	—	No	Not required
NC346C	APC3.5 (M)	0.01 to 26.5	13 to 17	1.15:1	1.25:1	1.35:1	_	Yes*3	Required ^{*3}
NC346E	APC3.5 (M)	0.01 to 26.5	19 to 25 ^{*1}	1.50:1	1.50:1	1.50:1		Yes ^{*3}	Required ^{*3}
NC346Ka	K (M)*2	0.10 to 40.0	10 to 17	1.25:1	1.30:1	1.40:1	1.50:1	Yes ^{*3}	Required ^{*3}

NC346 series summary specifications

*1: Flatness better than ±2 dB

*2: Compatible with SMA and APC3.5

*3: When using noise sources output by DC, always use in combination with a DC block.

Noise Figure Measurement Function [Opt.017]

\sim		Ordaring	RF Connector	Frequency Range
	Model	Name	RF Connector	Frequency Range
	J0805	DC Block, N type (MODEL 7003)	N (M)-N (F)	10 kHz to 18 GHz
DC Block	J1555A	DC Block, SMA type (MODEL 7006-1)	SMA (M)-SMA (F)	9 kHz to 20 GHz
	J1554A	DC Block, SMA type (MODEL 7006)	SMA (M)-SMA (F)	9 kHz to 26.5 GHz
	K261	DC Block	K (M)-K (F)	10 kHz to 40 GHz
	J0004	Coaxial Adapter	N (M)-SMA (F)	DC to 12.4 GHz
Adapter	J1398A	N-SMA Adapter	N (M)-SMA (F)	DC to 26.5 GHz

Specifications outlines of recommended DC Blocks and Adapters

Recommended DC blocks / Adaptor combinations for MS269xA/MS2830A series signal analyzer

	Model	Frequency Range	RF connector	Recommended DC Block Order Name	Recommended Adapter Order Name
	MS2690A	50 Hz to 6 GHz	N (F)	J1555A	J0004
MS269xA series	MS2691A	50 Hz to 13.5 GHz	N (F)	J1555A	J1398A
Selles	MS2692A	50 Hz to 26.5 GHz	N (F)	J1554A	J1398A
	MS2830A-040	9 kHz to 3.6 GHz	N (F)	Not required	Not required
	MS2830A-041	9 kHz to 6 GHz	N (F)	Not required	Not required
MS2830A series	MS2830A-043	9 kHz to 13.5 GHz	N (F)	Not required	Not required
301103	MS2830A-044	9 kHz to 26.5 GHz	N (F)	J1554A	J1398A
	MS2830A-045	9 kHz to 43 GHz	K (F)	K261	Not required

Useful Measurement Functions for Evaluating Rx Characteristics (1/4)

BER Measurement Function [Opt.026]

Returns Data/Clock/Enable demodulated by DUT to MS2830A BER function

- ♦ Input Bit Rate: 100 bps to 10 Mbps
- Input Signal: Data, Clock, Enable (Polarity reversal supported)
- ♦ Input Level: TTL 3.3V
- Measured Patterns:

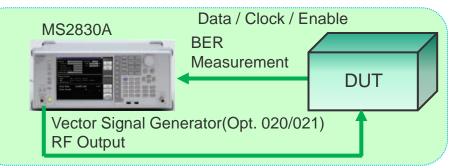
PN9/11/15/20/23, ALL1, ALL0, Alternate(0101...), User Data(4,096 bit Max.), PN9fix/11fix/15fix/20fix/23fix

Count Mode:

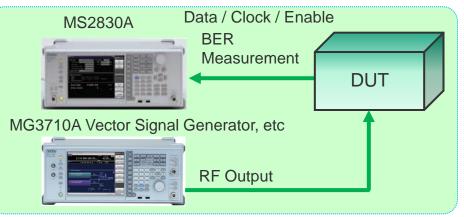
Data: Measures until specified Data count Error: Measures until specified Error count

Measurable Bit Count: 1000 to 2³²-1

(4,294,967,295 bit)


♦ Measurable Error Bit Count: 1 to 2³¹-1

(2,147,483,647 bit)


- Count Mode:
 - Single: Measures specified measurement bit count once

Continuous: Repeats Single measurement

Endless: Continues measurement to upper limit of measurement bits

BER Measurement Setup Example(with Opt. 020/021 installed)

BER Measurement Setup Example (using external vector signal generator)

This option installs a BER measurement function for measuring error rates between 100 bps and 10 Mbps using the DUT demodulated Data/Clock/Enable signals. The results are displayed on the MS2830A screen.

Useful Measurement Functions for Evaluating Rx Characteristics (2/4)

BER Measurement Function [Opt.026]

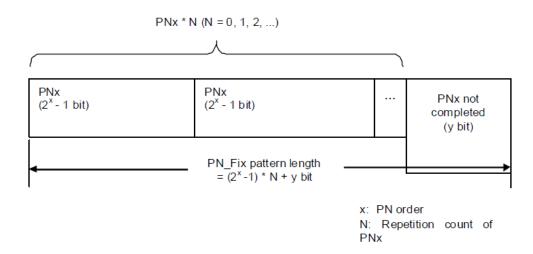
	A MS2830A BER Test					1/24/2013 11:28:09	
	Data Type Pattern File Bit Length Sync Positio Sync Positio Measure Mode	n Length	Count Mode Data	Data 10000 1	Bit Bit	BER Test Measure Start Measure Stop	BER Test Start or Stop
Error Rate —	Measure Inform Status Error SyncLoss Co	Stop Synchronizing BitError SyncLoss	Measuring ClockError Ena	ableError		Count Clear	Clears measurement result
Error Bit-	Error Ra Error Co		-002 97 ,	1.008 962		Data Type PN9 Measure Mode Single Count Mode	Data Type PN9/11/15/20/23, ALL1, ALL0, Alternate(0101), User Data, PN9fix/11fix/15fix/20fix/23fix Measure Mode Count Mode
	BER	Measureme	ent Exa	ample	Μ	leasured Bit	

Measure Mode

Single: Measures selected data patterns until result reaches specified number of bits or specified number of error bits

Continuous: Repeats single measurements (default) Endless: Measures data until result reaches upper limit of measurement count bit

Count Mode


Data: Specifies number of measurement bits (default) Error: Specifies number of measurement error bits

BER Measurement Function [Opt.026]

[PN Fix pattern]

At BER measurement, special PN patterns called PN_Fix patterns can be used. A PN Fix pattern consists of repeated parts of PN patterns, and PN patterns with a shorter length than 1 cycle.

Even when the PN data part of the waveform pattern output from vector signal generator has no periodicity, BER measurement is supported by selecting PN Fix at the BER measurement function.

Initial Pattern

Data Tura	Initial Pattern Setting Range	Resolu-	Default	
Data Type	Binary	Hex	tion	Default
PN9Fix	00000000	000	1	1FF
	to 111111111 (9 bits)	to 1FF		
PN11FIx	000000000	000	1	7FF
	to 1111111111 (11 bits)	to 7FF		
PN15Fix	0000000000000	0000	1	7FFF
	to 11111111111111 (15 bits)	to 7FFF		
PN20Fix	000000000000000000	00000	1	FFFFF
	to 11111111111111111111 (20 bits)	to FFFFF		
PN23Fix	000000000000000000000000000000000000000	000000	1	7FFFFF
	to 11111111111111111111111(23 bits)	to 7FFFFF		

Pattern Length

Setting Range: 96 to 134217728 bit (0 x 8000000) Resolution: 1 bit

BER Measurement Function [Opt.026]

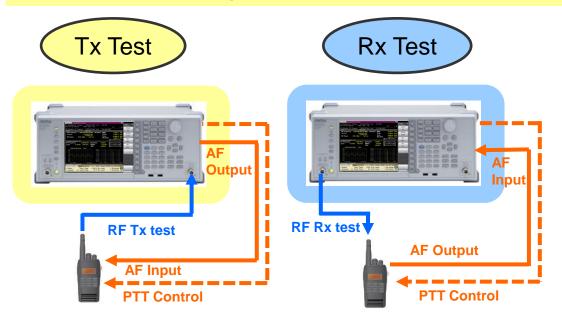
[User Defined Pattern]

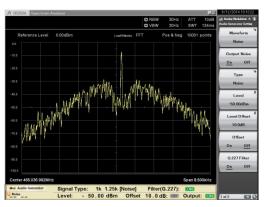
The BER measurement can use a user-defined pattern, which is an arbitrary binary string that is 8 to 4096 bits long and consists of a data bit string to determine whether synchronization is established plus a data bit string used as measurement data. A PC can be used to create a user-defined pattern in text file format. Load the file from USB memory or MS2830A internal hard disk.

Length: 8 to 4096 (Binary)

Extension: ******.bpn

Saved Folder: the root directory of the USB memory or internal hard disk (Example: D:¥)


pn9.bpn - Notepad Image: Constraint of the second sec	A MS2500 BER Test 1/24/2013 143141 Data Type UserDefine Count Mode Bit Pattern File Data 10000 Bit Bit Length Error Bit Sync Position Start Bit Data Measure Mode Endless	Loads user-defined patterns from the USB memory or the internal hard disk of the MS2830A.
1001001101001100110001000000110001100101	Measure Information Status Stop Synchronizing Measuring Error BitError SyncLoss ClockError EnableError SyncLoss Count 0 Error Rate 10.000E-003 1.000% Error Count 224302 /	Selects the media among the USB memory and internal hard disk from which user-defined patterns are to be loaded.


Example of User-Defined Pattern

User-Defined Pattern function menu

Useful Measurement Functions for Analog Radio (FM, ΦM, AM)

Combining the 3.6 GHz Analog Signal Generator MS2830A-088, MS2830A-018 Audio Analyzer MS2830A-018 and Analog Measurement Software MX269018A options in the all-in-one MS2830A main frame supports the simultaneous RF and AF signals required for implementing key TRx tests of analog(FM, ΦM,AM) radio equipment.

By using the spectrum analyzer display it is possible to measure the spurious and occupied bandwidth (OBW) while outputting an AF signal such as white noise (ITU-T G.227) from the Audio Analyzer option.

Key Measurement Test Items (FM Radio Equipment)

Tx Test : Tx Power, Tx Frequency, FM Deviation, Microphone input sensitivity, Modulation frequency characteristics, Distortion, S/N, Tone frequency, Occupied bandwidth (OBW)/Spurious emission or Unwanted emission strength (White noise (ITU-T G.227) output supported)

Rx Test : Receiving sensitivity (SINAD and NQ method), Bandwidth, AF level, Demodulation frequency characteristics, Distortion, S/N, Squelch sensitivity See MX269018A Product Introduction for more details.

Software Download Service

Software download service

This service, which provides updated versions of firmware and software for downloading by product customers, is available on Anritsu's website.

Firmware / Software	Contents	Available version
MS2830A Software Installer	 MX269000A Standard Software This software is installed as standard when shipping the main frame. Spectrum Analyzer function, Signal Analyzer function, etc. MX2690xxA series Measurement Software Measurement software for various communication systems. 	The latest version is available on the website.
MX370100A IQproducer Installer	MX2699xxA series IQproducer PC application software used for generating waveform pattern for various communication systems	The latest version is available on the website.
Standard waveform patterns	MX269099A Standard waveform pattern This waveform pattern is installed as standard when shipping the MS2830A-020/021 or MS2830A-189. The latest version is installed when shipping.	Only the updated waveform pattern is available on the website.

Download software list

User registration is required for using the software download service.